SOUTH-NORTH RESEARCH COOPERATION

Reflections on the encounter with the academic culture in Denmark

Carla Colque –Little PhD Stipendiat

October 29, 2019

UNIVERSITY OF COPENHAGEN

DISPOSITION

A. MY RESEARCH PROJECT

INTRODUCTION
 AIMS
 MATERIALS AND METHODS
 RESULTS
 CONCLUSIONS

B. REFLECTION ON THE ENOCUNTER WITH THE ACADEMIC CULTURE IN DENMARK

1 CONTEXT FOR MY SCHOLARSHIP

SOUTH-NORTH RESEARCH COOPERATION PhD PROJECT ON QUINOA

Carla Ximena Colque-Little Christian Andreasen (Principal supervisor) Daniel Buchtvaldt Amby (Co-supervisor)

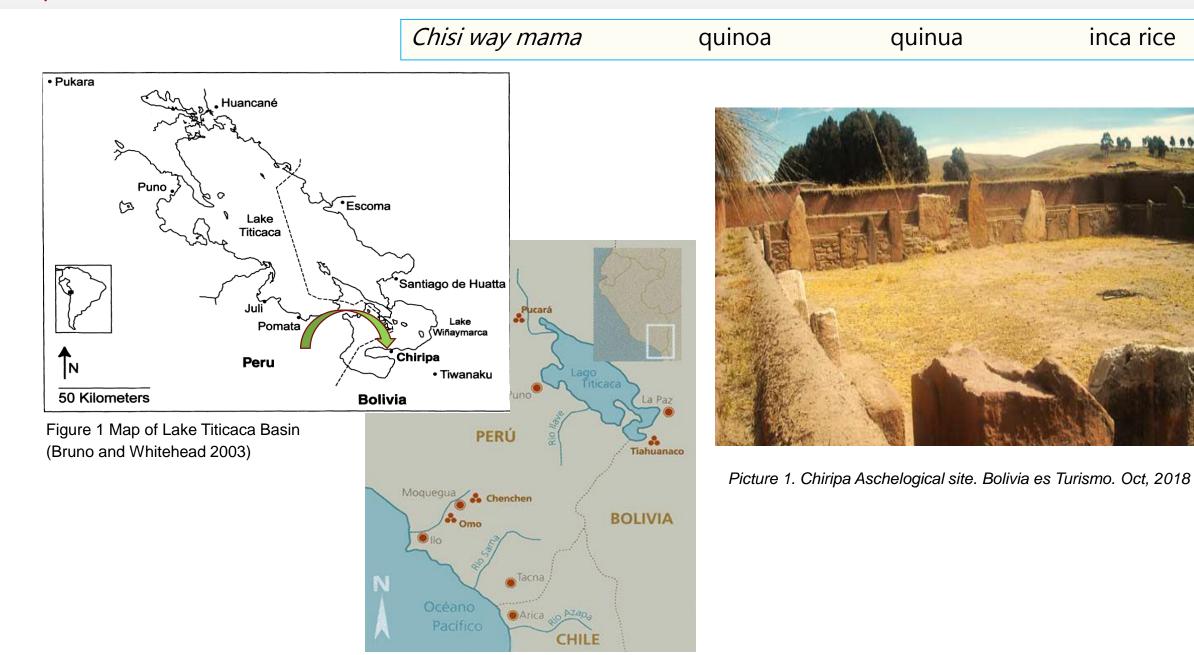
Department of Plant and Environmental Sciences

UNIVERSITY OF COPENHAGEN

Background picture: Orqohuayta-Puno, Peru. March, 2017

Characterization of diseases infecting quinoa *Chenopodium* spp. and search for sources of resistance to Downy mildew (*Peronospora variabilis*)

Carla Colque-Little



1. Introduction

Sand Dunes Chipaya, Oruro-Bolivia

UNIVERSITY OF COPENHAGEN

https://historiaperuana.pe/wp-content/uploads/mapa-cultura-tiahuanaco.jpg

A dycotiledonous herbaceous plant with edible seeds.
Bbelonging to Order Cariophylialles and Amaranthacea family.
As a chenopod (goose foot) closely related to beets, chard and spinach

Why an exceptional food?

Protein ≈15%

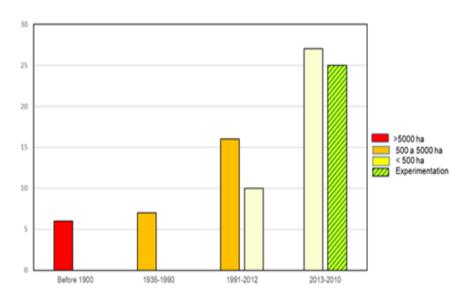
- Llysine , isoleucine
- Minerals and vitamins

- Polyphenols, phytosterols, and flavonoids with possible nutraceutical benefits
- Good proportions of omega-6 and vitamin E

Quinoa is the grain crop with most nutrients per 100 calories. It has no cholesterol and does not cause allergies (FAO, 2013)

Tahua, Salinas de Garci Mendoza.Oruro, Bolivia (Shores of salt flat)

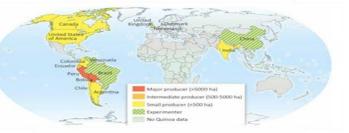
Resilient crop


Able to survive high altitudes, thin and cold air, hot sun, salty or sandy soil, little rainfall, and sub-freezing temperatures.

Quinoa world expansion

001010 2000		2000-2000
Argentina		Canada, Saskatchewan
Bolivia	1/2	Cuba
Chile	*6	France, Loire Valley (1978)
Colombia		Kenya (1935)
Ecuador		Tibet (1984)
Peru	*2	UK, Cambridge (1978)
		USA (Southern Colorado)(1948)

Number of quinoa growing countries timeline and quantity of produce



1991-2012		2013-2010		
Austria (1990-)		Algeria		
Brazil (1997-2003)		Bhutan		
China (1997-2003)	5	Burkina Faso		
Czech Republic (1990-)		Cameroon		
Denmark (1997-2003)	*	Chad		
Germany (1990-)		Djibouti		
India (1997-2003)		Ethiopia		
		Ghana		
Italy (1993- Israel		Guinea		
Japan		Iran		
Lebanon		Iraq		
Netherlands (1993-)		Kyrgyzstan		
Pakistan (2011)		Mauritania		
Poland (1990-)		Niger		
Spain		Portugal (2008-2012)		
Sweden (1990-)		Senegal		
Turkey (2006-)		Somali		
Australia		South Sudan		
Belgium		Sri Lanka		
Bulgaria		Sudan		
Costa Rica		Syria (2006-)		
Egypt (2006-)		Tajikistan		
Finland		Togo		
Greece (1990-)		Uganda		
Jordan		Yemen		
Laos		Zambia		
Madagascar		Armenia		
Malawi		Bangladesh		
Mali		Beirut		
Morocco (2008-2012)		Benin		
Namibia		Brunei		
Nepal		Congo		
New Zealand		Qatar		
Romania		Kazakhstan		
Russia		Korea		
United Arab Emirates		Latvia		
Venezuela		Liberia		
		Lithuania		
		Mexico		
		Mongolia		
		Norway		
		Oman		
		Rwanda		
		Saudi Arabia		
		Switzerland		
		Thailand		
		Tunisia		
		Ukraine		
	_	Uruguay		

Uruguay Uzbekistan

Figure 2. Quinoa growing countries timeline and quantity of produce (compiled by author from Public science and (Bazile et al., 2016) (Bazilie, D., Baudron, F., 2015).

Quinoa worldwide development in 1993

Landa United Landa Landa Kenter Se France Se Brain Kenter Se Brain

Quinoa worldwide development in 2013

Fig. 3. Quinoa worldwide development 1973-2013 (Bazilie, D., Baudron, F., 2015) Abiotic stressor

Biotic Stressor

Quinoa Production, area and yield

Agricultural Practices

- Little or no replacement
 - of soil fertility

- Climate change negative effects
- Population dynamics of pests and **diseases**
- Lack of **seed** production

Figure 4 Quinoa production area and yield for Bolivia (Blajos, J. Et al. 2014)

2. Aims

 Find genetic resources with resistance to the main pathogen (*Peronospora variabilis*) infecting quinoa worlwide

Characterise new emerging diseases in the foliar/seed pathobiota system In Denmark.

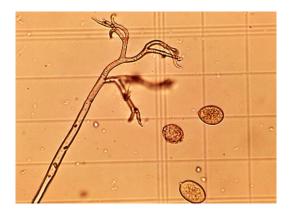
Hypotheses

- Genetic variation of downy mildew disease resistance could be observed among the 124-Bolivian quinoa accessions. Based on this well-differentiated genetic populations and admixtures could be postulated
- A number quantitative trait loci (QTLs) could be be associated with downy mildew resistance. These markers may provide a tool to be utilized in molecular quinoa breeding as marker-assisted selection


Self polinated genotypes

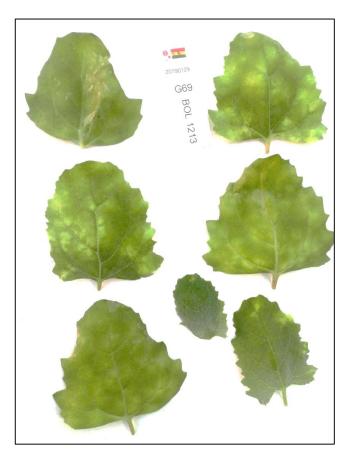
Pathogen isolation propagation

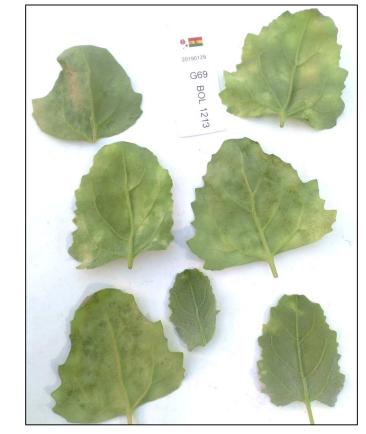
Chenopodium album or flat hen



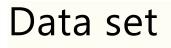


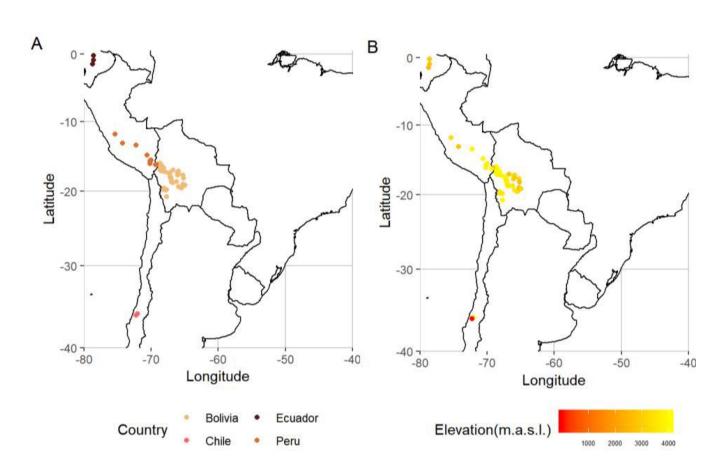




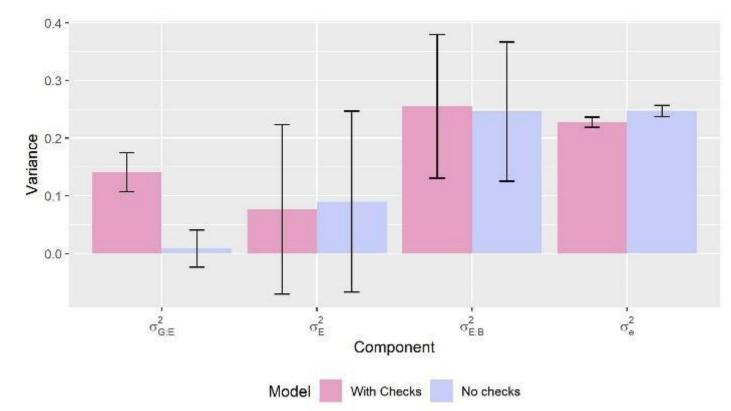

Choi, et al 2008. Mycopath 165

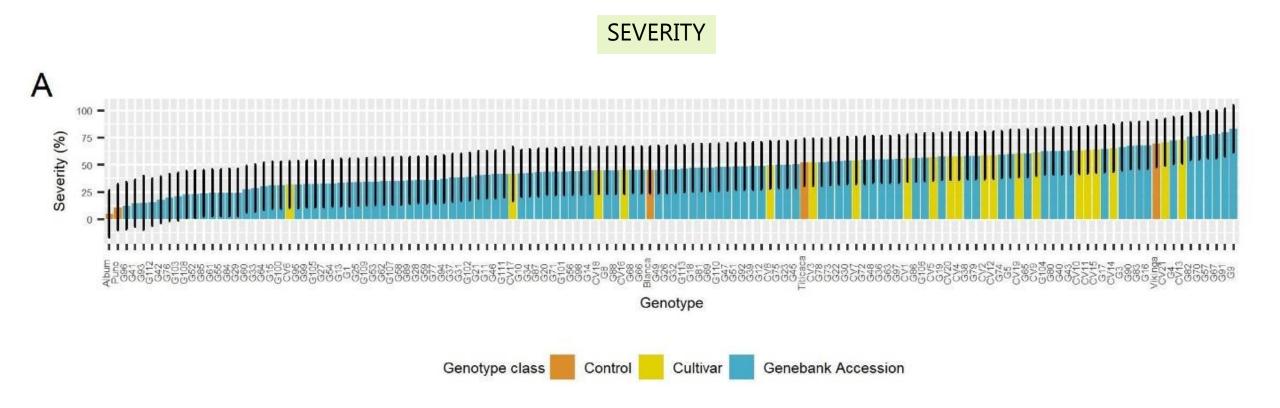
Measuring porcentage of pathogenicity




Severity=% adaxial side with lession

Sporulation=% lession covered by spores in the abdaxial side

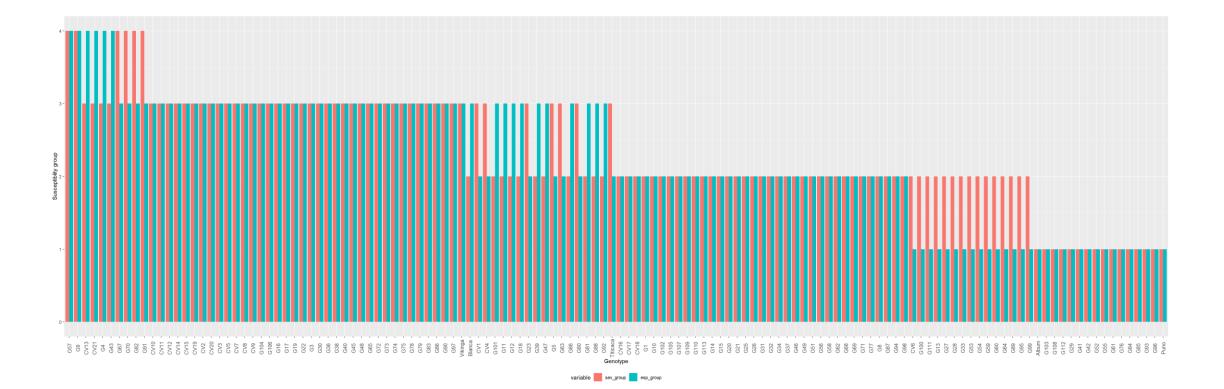




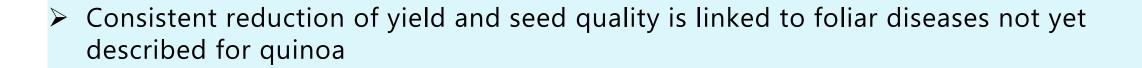
Distribution of germplasm bank accessions across south America by country (A) and by elevation (B) according to the passport data. Source: Bolivian National Germplasm Bank (http://germoplasma.iniaf.gob.bo)

Measuring interactions genotype vs environment

Variance components estimates and their standard errors for incidence GLMMs with and without checks. σ 2G:E, σ 2E; σ 2E:B: Variance components for the genotype-experiment interaction, experiments and blocks nested within the replicates, σ 2e : Residual variance.

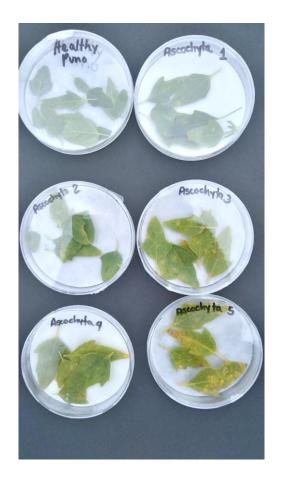


Estimated severity means ordered from small to large for the genotypes after fitting a model with untransformed data. Error bars represent the 95% confidence intervals.

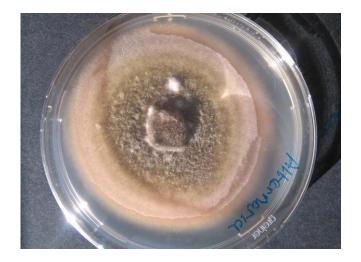

Grouping the genotypes

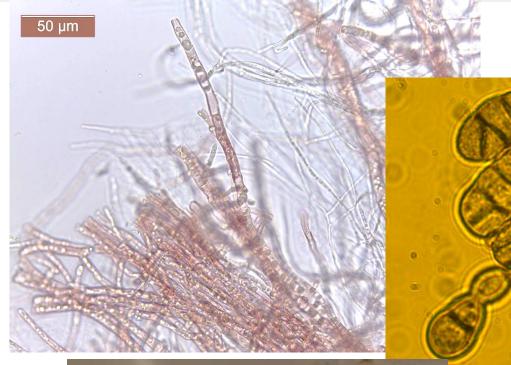
The groups are defined as:

Group I (Very resistant): Genotypes with mean % of severity <= 25% and mean % of esporulation <= 25% Group II (Resistant): Genotypes with severity >25% and sporulation between 0.1-25% Group III (Tolerant): Genotypes with severity >25% and sporulation between 25-60% Group IV (Susceptible):Genotypes with severity >50% and sporulation between 60-80% Group V (Very susceptible): Genotypes with severity >50% and sporulation >80%



Hypotheses

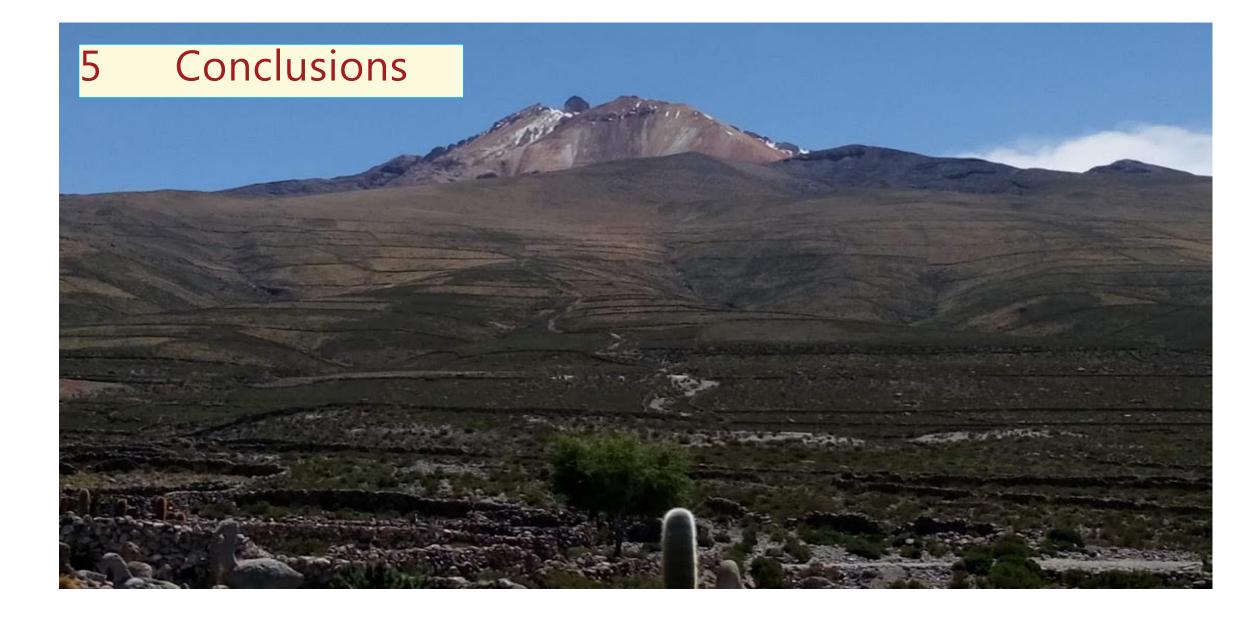



Isolation



0 0

Pathogenicity tests



Potatoes, quinoa and early blight

Results

	В	С	D	E
I#	Percentage	MiSeq12-01	MiSeq12-02	MiSeq12-03
	scata4113_1_Fungi_Ascomycota_Dothideomycetes_Capnodiales_Cladosporium		40.38	41.87
	scata4113_0_Fungi_Ascomycota_Dothideomycetes_Pleosporales_Alternaria		2.91	30.66
	scata4113_2_Fungi_Ascomycota_Dothideomycetes_Pleosporales_Alternaria		8.79	7.47
	scata4113_3_Fungi_Ascomycota_Dothideomycetes_Pleosporales_Epicoccum		2.63	9.44
	scata4113_4_Fungi_Ascomycota_Dothideomycetes_Capnodiales_Dissoconium	27.18	31.75	0.39
	scata4113_5_Fungi_Ascomycota_Sordariomycetes_Hypocreales_Fusarium equiseti?	1.53	0.11	1.89
	scata4113_6_Fungi_Ascomycota_Leotiomycetes_Helotiales_Botrytis	0.54	1.83	0.35
	scata4113_7_Fungi_Ascomycota_Sordariomycetes_Hypocreales_Fusarium tricinctum species complex	1.45	0.06	0.23
	scata4113_8_Fungi_Ascomycota_Sordariomycetes_Hypocreales_Fusarium nygamai/thapsinum	0.23	0.00	0.04
	scata4113_9_Fungi_Ascomycota_Dothideomycetes_Capnodiales_Ramularia collo-cygni		3.43	0.23
	scata4113_10_Fungi_Ascomycota_Dothideomycetes_ Sordariales		0.06	1.12
	scata4113_11_Fungi_Ascomycota_Dothideomycetes_Pleosporales_Neoascochyta		3.20	0.00
	scata4113_13_Fungi_Ascomycota_Dothideomycetes_Capnodiales		0.00	0.96
	scata4113_14_Fungi_Ascomycota_Dothideomycetes_Pleosporales_Neocamarosporium		0.17	0.12
	scata4113_15_Fungi_Ascomycota_Dothideomycetes_Capnodiales_Cladosporium		0.11	0.08
	scata4113_12_Fungi_Ascomycota_Dothideomycetes_Pleosporales_Curvularia		0.00	0.00
	scata4113_21_Fungi_Ascomycota_Dothideomycetes_Capnodiales_Ramularia		0.06	0.04
	scata4113_16_Fungi_AscomycotaDothideomycetes_Dothideales_Sydowia		0.00	0.04
	scata4113_20_Fungi_AscomycotaDothideomycetes_Dothideales		0.11	0.27
	scata4113_17_Fungi_Ascomycota_Eurotiomycetes_Eurotiales_Penicillium steckii		0.00	0.12
a	ill tag by cluster counts 🕘			

 The most tolerant groups of accessions according to the severity estimates include checks (*C. album* and Puno), and gene bank accessions (G41, G42, G76, G93, G96 and G112). On the other hand, the most susceptible genotypes are Vikinga (Danish cultivar), varieties CV13 and CV21, and ace

Genome-Wide Association Study (GWAS) for pathogen resistance and correlated traits in the quinoa (*Chenopodium quinoa*)-downy mildew pathosystem

Carla Colque-Little^a, Ole Søgaard Lund^a, Miguel Correa^b, Jesper Cairo^a, Christian Andreasen^a, Hans Jeppe-Piepho, Daniel Buchvaldt Amby^a, Karl Schmid^b

aDepartment of Plant and Environmental Sciences, University of Copenhagen, Denmark. cxl@plen.ku.dk bDepartment of Crop Biodiversity and Breeding Informatics, Faculty of Agriculture, University of Hohenheim, Stuttgart, Germany

4. PAPER 2:

"First report of *Alternaria infectoria*, *Alternaria alternata* and *Cladosporium allicinum* as foliar pathogens on quinoa (*Chenopodium quinoa*)"

Carla Colque-Little, Christian Andreasen, Ole Søgaard Lund, Daniel Buchvaldt Amby

Department of Plant and Environmental Sciences, University of Copenhagen, Denmark. cxl@plen.ku.dk

B. Reflection on the academic encounter in Denmark

Bolivia

www.worldmap1.com/south-america-earthmap

Population: 11 514 800 (INE, Bolivia, 9/10/2019).

Area: 1 .098 581 km2 **Density**: 10,4 persons/km2

Literacy: 95% for over 15 years old (2012). INE; 2019

National basic wages 2.122 Bs = 2080 Dkk

Life expectancy 71.33 years (2019) (<u>www.macrotrends.net</u>).

Retirement Age: 58 (aljazeera.com/news)Population below poverty line(%): 35%
knoema.com/atlas/BoliviaBirth rate 21.628 births per 1000 people (www.macrotrends.net)

Education matters

- Bolivian population: 50 % literate (70% rural), and elite educated minority (borgenproject.org).
- Bolivia devotes 23 % of its annual budget to education (borgenproject.org).

- Public spending 7.2% of GDP in 2005 (Unicef.org)
- Parents with higher levels of education and income spend more on their children's education (Unicef.org). (around 25% of income)
- Private schools in Bolivia cost between \$70 (25% of National Income wages) and \$450 dollars a month (boliviabella.com).

First PhDs funded 100% by Bolivian resources

..it is aimed for Bolivia to develop knowledge and technology to support the productivity and economic growth with sovereignty…."therefore the program for postgraduate scholarships was launched in 2014 for Bolivian graduates to access the best universities of the world"(Memouir for the first public launch of scholarships, 2014)

A journey of Faith and challenge

- ✓ Independance
- ✓ Resiliance
- ✓ Autonomy
- ✓ Self confidence
- ✓ New skills
- ✓ Jante loven

Lost family members


PhD studies at KU

TEAM A PhD fellow	TEAM B PhD stipendiat		
Danish salary	Stipend coming form sponsor country		
Vacation, maternity/paternity, sick leave	none		
Psychological aid	none		
CONSEQUENCES			
	No possibility to apply for student assistant or student helper jobs		
	Feeling of inequality		
	Feeling of unfairness		
WRONG ASUMPTIONS			
PhD fellows pays for everything	Stipendiat is paying less or partially		
PhD fellow is well adapted and knows how to manoeuvre in the academic arena of Denmark	Stipendiat needs to adjust to the culture and learn how to interact in his/her new environment		

SUGGESTIONS

- Modify the admission process for international PhD stipendiats. Include 6 weeks of stipend to cover vacation and allow negotiations for covering cases of sick leave.
- Classify PhD stipendiat as students so they can access to few hours work as research assistants or student helpers.
- Create a file containing information regarding the Financial situation of the student.
- Principal supervisor should clarify the situation of the student to secretaries, technicians and every body in their section.

• UNIVERSITY OF COPENHAGEN

